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ABSTRACT

One of today’s ongoing challenges in directed energy deposition (DED) is con-

trolling the geometry and material properties of parts. The objective of this

paper is to investigate the relationship between several printing parameters of

DED (laser power, laser speed, powder feed rate) and the melt pool temperature.

Because DED is a complex and nonlinear process, well-established supervised-

learning models such as support vector regression and artificial neural networks

are particularly well suited to represent it. The MiCLAD machine, designed at the

Vrije Universiteit Brussel, is equipped with a hyperspectral camera that monitors

the light emitted at several wavelengths by the melt pool during the building

process. A steady-state data set produced by the hyperspectral camera is
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postprocessed by an advanced temperature estimation method, and the limita-

tions of the temperature estimation method are identified and discussed. The

temperature data are used as training data for supervised-learning methods, and

a study is conducted to compare the performance of the considered methods

using the measured optical data. This study demonstrates that the melt pool

temperature of the DED process can be effectively modeled through the printing

parameters thanks to supervised-learning methods.

Keywords

additive manufacturing, directed energy deposition, machine learning,

in situ monitoring, multicolor pyrometry

Introduction

DIRECTED ENERGY DEPOSITION

Directed energy deposition (DED) is a metal additive manufacturing (AM) tech-
nique that uses a laser to melt and locally fuse blown metallic powder.1 It is a prom-
ising manufacturing technique for complex parts in demanding domains, such as
the aerospace and automotive industries. However, as in other metal AM techni-
ques, there is a complex interplay of several simultaneous physical phenomena.2,3

Therefore, there are many printing parameters that have a first-order influence on
the process, such as laser power, laser speed, powder feed rate, carrier gas flow, and
so on. Because of this interplay, DED suffers from a lack of process reproducibility
and reliability that currently prevents its wide adoption in mass production. To
move past this hurdle, optimization of the process parameters and control of the
process are required.4

To gather in situ information about the process and optimize it, different sens-
ing strategies have been undertaken. The temperature distribution and geometrical
properties of the melt pool were shown to correlate well with the geometrical prop-
erties of parts manufactured with DED.5 Given the high temperature in the melt
pool, a contactless method is required. Optical measurement of the emitted light by
the melt pool allows the estimation of the temperature by using Planck’s law and an
estimation of the material emissivity.6

DATA-DRIVEN ALGORITHMS

Given the high number of process parameters and the inherent nonlinearities of the
DED process, it is not trivial to build a robust model of the process. There has been
a lot of effort to create numerical physics-based models, but their accuracy is lim-
ited by the approximative knowledge of material properties7 and by the difference
in scale between the local melt pool dynamics and the part.2

Data-driven algorithms are good tools for building a model of the process
without underlying knowledge of the melt pool dynamics and material properties.
Both shallow and deep data-driven models have been applied successfully to DED
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in situ monitoring data from various sensing sources.8–13 Postprocessing of high-
dimensional data from optical sources is required most of the time, and such post-
processing brings another layer of complexity. Zhang et al.12 applied the XGBoost
and long short-term memory algorithms on transient temperature DED data to
predict melt pool temperature but with limited focus on how the temperature was
computed from infrared data.

Based on past work, it seems clear that there is a vast variety of data-driven
algorithms currently available to researchers, but there is no available method yet to
determine a priori which will be the most adapted for a given application or pro-
cess. However, the amount of data required to successfully train an algorithm dif-
fers greatly between shallow and deep models. The data requirement also depends
on the inherent complexity of the relationship to be modeled. Snyers et al.14 con-
ducted a preliminary study on simulated data in which they showed that an order
of magnitude of 100 samples seems satisfactory to train shallow supervised-learning
(SL) algorithms but that deep algorithms most likely require more data. The present
paper collects a sufficiently large experimental data set and trains the same SL algo-
rithms with it.

In conclusion, this paper presents an experimental in situ monitoring data set
that was collected in a DED machine and shows how the data set was used in con-
junction with SL techniques to produce a model of the steady-state DED process.
The first section describes the experimental setup, the process parameters, and a
method for extracting temperature from the raw data. In the second section, the
postprocessed data set is used to train several data-driven algorithms, and their per-
formance is compared.

Experimental Study

METHODS ANDMATERIALS

DED Machine

The experimental setup that is used to produce the raw in situ monitoring data is
the MiCLAD research platform. It is a DED machine designed and built at the Vrije
Universiteit Brussel15 and is equipped with several sensors, including a multispec-
tral 3D-One Avior AX-M25NIR camera installed coaxially. The camera uses a
hyperspectral sensor that is active in the near infrared region (NIR) and provides
relevant information to infer the temperature of the melt pool as explained in the
next section. A Fabry-Perot filter is deposited on each pixel in a 5� 5 mosaic pat-
tern. Therefore, each macropixel captures one value for each of the 25 different
bands. The main characteristics of the hyperspectral camera are summarized in
table 1.

The experiment consists of printing 126 linear tracks of 40 mm with 316L steel
powder (see fig. 1). For each track, the three main process parameters (the laser
power P, the laser speed v, and the powder feed rate _m) are varied. To choose the
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values of the considered process parameters, the usual energy density (Ed) equa-
tion16 is first modified to take into account the powder feed rate:

Ed ¼
P

v � d2 þ _m=q
(1)

where:
d¼ laser diameter and
q¼ powder material density.

TABLE 1 3D-One Avior AX-M25NIR camera’s main characteristics

Maximum bitlength 8 bits

Full resolution 2,048� 1,088 pixels

Filter layout 5� 5

Spectral range 600–1,000 nm

Resolution per spectral band 409� 217 pixels

Maximum framerate at full resolution 120 fps

Wavelength peaks of Fabry-Perot

filter in the NIR

690, 703, 714, 730, 731, 742, 742, 755, 771, 784, 794, 810, 820, 833,

848, 858, 870, 884, 895, 904, 918, 926, 936, 945, and 954 nm

FIG. 1 Tracks printed on the MiCLAD machine.
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The values of the process parameters were chosen to keep the energy density
between 5 and 30 J/mm3, which is an acceptable range of parameters for the DED
process of 316L steel17:

• P: 500, 600, 700, 800, and 900 W
• v: 800, 900, 1,000, 1,100, and 1,200 mm/min
• _m: 0, 1, 2, 3, 4, and 6 g/min
The resulting tracks were printed on stainless-steel strips (see fig. 1). During

the printing of each track, the hyperspectral camera captures the light emitted by the
melt pool and averages it in the time domain to get the steady-state value of each
pixel of the region of interest (the melt pool). In summary, the experiments link each
process parameter vector P; v; _mð Þ with a hyperspectral image of the melt pool.

Camera Calibration

The gain of the camera was obtained in a calibration experiment in which an inte-
grated sphere (OL Series 455) illuminated the hyperspectral camera through the
DED machine optics. Because the spectral radiance of the calibrated lamp is known,
the gain can be computed by dividing the mean value of the captured image by the
spectral radiance of the lamp at the peak wavelength of the corresponding band. It
is assumed that the gain behaves linearly with the camera exposure time Dt. Figure 2

shows the resulting camera gain with respect to band peak wavelength.
To link the pixels to a physical length, a target of known size was placed in

front of the optics of the DED machine and was captured by the hyperspectral
camera. Thanks to the known size of the target, the size of one pixel could be
retrieved (11.36 lm/pixel).

FIG. 2 System gain (A) and signal of ideal 1,670-K blackbody system measured with

camera (B).
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POSTTREATMENT DATA

Multicolor Pyrometry

To estimate the temperature T̂ from the spectrum Lk,i obtained by the camera, the
multicolor pyrometry method18 is used. It comes down to solving the following
minimization problem:

T̂ ¼ arg min
T

XN

i¼1

Lk, i

Lk, n
� B ki, Tð Þ

B kn, Tð Þ

����
���� (2)

where:
B¼ spectral radiance of an ideal black body.

The minimization is equivalent to fitting the blackbody equation to the mea-
sured spectrum with the least absolute deviations method, using the emissivity as
an adjustment variable. The choice of reference wavelength kn obviously influences
the resulting temperature because it anchors the blackbody equation to a particular
kn; Lknð Þ pair. The most sensible choice for the reference wavelength is to choose

the wavelength at which the spectral radiation measured by the camera has the
highest signal-to-noise ratio (SNR).

If the blackbody spectrum at the melting temperature of 316L steel (1,670 K) is
multiplied by the system gain, the maximum signal is observed at wavelength
k¼ 884 nm (see fig. 2). Therefore, this wavelength was chosen as the reference in
the temperature estimation method.

The error to be minimized is influenced by the noise of the measured signals.
As can be seen in figure 3, the signals from wavelengths below 754 nm are much
weaker than signals from higher wavelengths, and therefore their SNR will be much
worse. To limit the influence of noise on the resulting temperature, we decided to
ignore signals from wavelengths under 754 nm. Signals from wavelengths above

FIG. 3 Measured spectral radiance and fitted graybody spectrum.
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904 nm were also ignored out of empirical experience: they significantly diverged
from the graybody spectrum and increased significantly the minimal fitting error.

Figure 3 shows an example of a pixel’s measured spectral radiance and the cor-
responding fitted graybody spectrum. In this example, the graybody spectrum
shows very good agreement with the measurements. When the method is applied
to each pixel of a hyperspectral image, a 2D temperature distribution is obtained
(see fig. 4). The temperature estimation method was implemented in MATLAB and
took approximatively 32 s to solve a 300� 300 hyperspectral image on six cores
(Intel Core i7-9850H). The required time to solve the minimization problem pre-
vents this method from being used in a real-time control system given the time con-
stant of the DED proces.19

Temperature Distribution and Extraction of the Relevant Metric

An example of temperature distribution obtained with the estimation method is
shown in figure 4. The plot shows only temperatures at locations where the temper-
ature estimation method could fit a graybody spectrum to the measurements. Loca-
tions where the signal was too weak were ignored and are plotted in white on the
plot. One can notice than the minimum temperature computed in this example is
above the melting temperature of 316L stainless steel (1,670 K). As a result, the out-
line of the melt pool cannot be detected from the temperature distribution. Indeed,
the maximal radiance of the blackbody spectrum is proportional to T5. Therefore,
the temperature range of the measurements is limited by the dynamic range of the
camera. In other words, it is difficult to capture enough light from the areas at lower
temperatures without saturating the pixels capturing light from the areas at higher
temperatures.

FIG. 4 Temperature distribution (P¼600 W; v¼800 mm/min; _m¼0 g/min) obtained

by multicolor pyrometry.
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It should be noted that a temperature over the boiling temperature of stainless
steel is estimated in the center of the melt pool. There is significant literature stating
that a hot vapor plume exists above the melt pool.20,21 This vapor plume could
influence the camera measurements and lead to a higher temperature estimation in
the center of the melt pool. Fortunately, the vapor plume could serve as a proxy to
the melt pool because machine-learning (ML) algorithms do not need an under-
standing of the underlying process to build a model out of the data.

To use this temperature distribution with shallow data-driven algorithms, a
global metric must be extracted. To avoid the effect of local noise that could result
in a very high or low local temperature, we decided to use the mean temperature
Tmean over an arbitrary area of the measured melt pool. The area is pictured as a
dark rectangle in figure 4.

Prediction of the Melt Pool Temperature

SUPERVISED-LEARNING METHODS

The target relationship that is approximated by the algorithms is the following:

P, v, _mð Þ ! Tmean (3)

The inputs of the models are therefore the laser power P, the laser speed v, and
the powder feed rate _m, and the output is the mean temperature Tmean as defined
in the previous subsection. This link between process parameters and the mean
temperature has many applications in controlling the DED process.

To build a mathematical model of this target relationship, SL regression algo-
rithms are used because of the continuous nature of the output variable. As
explained in the introduction, a trial-and-error step is necessary to determine which
algorithm is the most adapted to the phenomenon to be modeled. In this paper, we
consider a selection of the most usual ML algorithms.22 The algorithms and their
hyperparameters are listed in table 2. The capacity and computational cost of each
algorithm are briefly discussed in this subsection.

The usual linear regression model is used as a baseline to compare its perfor-
mance with algorithms with more capacity. It is expected to underfit complex (non-
linear) relationships given its limited capacity. Two common variations of the
linear regression are also included in the study: the ridge and the lasso regression.
Ridge regression uses L2-norm regularization on the linear weights to prevent over-
fitting on the training set, and lasso regression uses L1-norm regularization to
achieve both variable selection and overfitting prevention.22

Two nonparametric models are considered in this study: the K-nearest neigh-
bor (KNN) and decision-tree (DT) algorithms. The KNN algorithm outputs a
weighted averaged of the k closest training data points to the input, and the DT
algorithm builds a flowchart-like structure based on the value of the features to
make a prediction (see fig. 5). As nonparametric models, they can achieve high
capacity, but their computational cost grows with the size of the training set.23
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A support vector regression (SVR) model is included in this study as an effi-
cient and high-capacity SL algorithm. Because of its kernel trick it is capable of fit-
ting a nonlinear model as a function of its features using convex optimization
techniques that converge efficiently.23

Finally, a simple example of an artificial neural network (ANN) is also included
in this study. A neural network is made of several neurons that are arranged in
layers and connected from one layer to the next (see fig. 6). The output of each neu-
ron is determined by a nonlinear function of the sum of its inputs. As a result, an
ANN typically has a higher capacity than classic ML algorithms but requires a large
data set to avoid underfitting and significant computational power to be trained.23

FIG. 5 Structure of a simple decision tree (maximum depth¼2).

TABLE 2 Supervised-learning algorithms

Model Hyperparameters Value

Linear regression — —

Lasso L1-regularization strength [1, 10, 100]

Ridge L2-regularization strength [1, 10, 100]

K-nearest neighbors Number of neighbors [3, 5, 10]

Weights [Uniform, distance]

Decision-tree regression Criterion [MSE, Poisson]

Maximum depth [3, 6, 9, 12]

Minimum number of samples at leaf node [3, 5]

Support vector regression Kernel function [RBF, polynomial]

Polynomial degree [2, 3, 4]

Kernel coefficient [1, 10]

Gamma [1, 2]

Artificial neural network Number of hidden layers 1

Type of layer Dense

Number of nodes per layer 4
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CROSS-VALIDATION AND HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization was implemented to maximize the performance of
an ML algorithm on the particular data set introduced earlier. Each considered
hyperparameter value is listed in table 2. To properly evaluate the generalization
error and prevent data leakage during the hyperparameter optimization, a nested
k-fold cross-validation scheme was performed. First, we split the data set in k1 times
and trained and tested the model on each of the (training set, testing set) folds. The
training set was used to train the model and tune the hyperparameters, and the test-
ing set was used only to estimate the performance of the model. This step is called
outer cross-validation.

During the evaluation of each of the k1 pairs, the training set was then further
split k2 times in (training set, validation set) folds. The training set was used to actu-
ally train the model, and the validation set was used to evaluate the performance of
a particular choice of hyperparameters. This step is called inner cross-validation.

To summarize, all of the data points are once part of the test set in one of
the outer folds. The overall performance of a given model is given by the mean
and standard deviation of the k1 estimations of the generalization error over the k1

outer folds.

FIG. 6 Structure of a simple artificial neural network.
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The two metrics that we chose to compute the generalization error of this SL
problem are the R2 score and the root mean square error (RMSE). The R2 score can
be interpreted as the percentage of variance of the testing set that is captured by the
model. A value of 1 means that the model perfectly represents the testing set.

R2 ¼ 1�
PN

n¼1 ŷn � yn
� �2PN

n¼1 �y � ynð Þ2
(4)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 ŷn � yn
� �2

N

s
(5)

where:
N¼ number of values in the set,
yn¼ nth value in the set,
ŷn¼ algorithm predicted value, and
�y¼mean value of the set.

RESULTS AND DISCUSSION

The algorithms presented in the previous subsection were implemented with the
scikit-learn24 and Keras Python packages. They were fitted to the simulated data
set on a Core i7-9850H laptop with nested cross-validation for the ML algorithms
(k1 = 5 and k2 = 4) and simple cross-validation (k1 = 5) with 500 epochs per fit for
the ANN. The nested cross-validation scheme was not applied to the ANN to limit
the computational cost. The mean and standard deviation of the metrics were
computed out of the five values of the five-fold outer cross-validation for the ML
algorithms.

The resulting metrics and training times are listed in table 3, and corresponding
regression plots are shown in figure 7. We can observe that the DT regression is the
most effective model. The KNN, linear regression, and SVR have a good to average

TABLE 3 Metrics of supervised-learning algorithms fitted to the experimental data set

R2 RMSE (K)
Training Time

(ms)Model Mean SD Mean SD

Linear regression 0.53 0.08 65.1 13.2 3.93

Lasso 0.56 0.05 64.0 14.8 3.85

Ridge 0.55 0.05 64.7 15.4 3.85

KNN 0.72 0.07 49.5 7.4 4.08

DT regression 0.79 0.05 44.0 10.9 4.45

SVR 0.56 0.07 64.3 19.6 7.2

ANN �7.07 5.30 248.2 29.5 141.6
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performance, and the ANN has a very poor performance. These results show that
the choice of algorithm heavily influences the performance of the model.

We can also notice that the hyperparameter optimization of the linear regres-
sion did not lead to a significant performance improvement for the ridge and lasso
regressions. This means that the regularization techniques in those algorithms are
not well adapted to the data set in this study.

The ANN is generally considered more able than traditional ML algorithms to
generalize high-dimensional data.23 Despite this, the ANN fitted to the simulated
data set has a much lower R2 score and much higher RSME than all of the other
algorithms. One possible explanation could be the relatively limited size of the data
set. Indeed, the downside of a much more plastic model such as the ANN is that it
requires much more data to fit all of its internal weights efficiently and avoid a high
model variance. Another possible explanation is that the structure of the considered
ANN is not appropriate for modeling the target relationship. To investigate these
possibilities, a larger data set should be produced, and several ANN structures
should be evaluated.

Finally, the considered data set represents only the steady-state process because
the collected values are averaged over the lengths of the tracks. This has limited
practical applications and requires a specific experimental campaign because reach-
ing steady-state is not common while printing a normal part with varying geo-
metrical features. In the future, transient data and therefore the influence of the
temperature history should be considered for applications in the control and condi-
tion monitoring of the process. The increase in input variables (features) should
require deeper algorithms, which in turn require a larger data set to be successfully
trained, but it should be possible to collect training data during normal prints.

FIG. 7 Regression plots for several SL algorithms.
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Conclusion

In this paper, an experimental in situ monitoring data set of the DED process was
presented, and the postprocess method was described. The postprocess method
consists of a temperature estimation method that makes use of steady-state hyper-
spectral optical data. The resulting experimental data set is then used in conjunction
with SL methods to correlate the steady-state mean temperature over an arbitrary
surface of the melt pool and the process parameters.

The temperature estimation method used in this work allows a refined temper-
ature distribution of the melt pool to be computed. However, it suffered from sev-
eral limitations. The range of temperature that the method computes does not
cover the full liquid area of the melt pool because of the limited dynamic range of
the camera. In addition, this method requires heavy computational power and a sig-
nificant computing time, which limits its possibilities in real-time applications.

The performance of SL methods was compared, and it was shown that the DT
regression could efficiently approximate the relationship between mean temperature
and process parameters. This result suggests that the choice of algorithm heavily
influences the performance of the overall model. The performance of the ANN was
particularly low and might either require more data or a different structure.

For future work, the temperature estimation could be improved by capturing
light from the melt pool at several exposures to increase the dynamic range of the
camera. Transient data and the influence of the temperature history should be con-
sidered for applications in the control and condition monitoring of the process. The
increase in input variables (features) should require deeper algorithms, which in
turn require a larger data set to be successfully trained.
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